
ncplib Documentation
Release 6.1.0

Dave Hall

Jun 11, 2022

Contents

1 Features 3

2 Resources 5

3 Usage 7

4 More information 19

Python Module Index 25

Index 27

i

ii

ncplib Documentation, Release 6.1.0

NCP library for Python 3, developed by CRFS.

Contents 1

http://www.crfs.com/
https://github.com/CRFS/python3-ncplib

ncplib Documentation, Release 6.1.0

2 Contents

CHAPTER 1

Features

• NCP client.

• NCP server.

• Asynchronous connections via asyncio.

3

https://docs.python.org/3/library/asyncio.html#module-asyncio

ncplib Documentation, Release 6.1.0

4 Chapter 1. Features

CHAPTER 2

Resources

• Documentation is on Read the Docs.

• Examples, issue tracking and source code are on GitHub.

5

https://ncplib.readthedocs.io/
https://github.com/CRFS/python3-ncplib/tree/master/examples
https://github.com/CRFS/python3-ncplib/issues
https://github.com/CRFS/python3-ncplib

ncplib Documentation, Release 6.1.0

6 Chapter 2. Resources

CHAPTER 3

Usage

3.1 Installation

3.1.1 Requirements

ncplib supports Python 3.7 and above. It has no other dependencies.

3.1.2 Installing

It’s recommended to install ncplib in a virtual environment using venv.

Install ncplib using pip.

pip install ncplib

3.1.3 Upgrading

Upgrade ncplib using pip:

pip install --upgrade ncplib

Important: Check the Changelog before upgrading.

3.2 NCP client

ncplib allows you to connect to a NCP server and issue commands.

7

https://docs.python.org/3/library/venv.html#module-venv
https://pip.pypa.io
https://pip.pypa.io

ncplib Documentation, Release 6.1.0

3.2.1 Overview

Connecting to a NCP server

Connect to a NCP server using connect(). The returned Connection will automatically close when the connec-
tion block exits.

import ncplib

async with await ncplib.connect("127.0.0.1", 9999) as connection:
pass # Your client code here.

Connection is automatically closed here.

Sending a packet

Send a NCP packet containing a single NCP field using Connection.send():

response = connection.send("DSPC", "TIME", SAMP=1024, FCTR=1200)

Receiving replies to a packet

The return value of Connection.send() is a Response. Receive a single NCP field reply using Response.
recv():

field = await response.recv()

Alternatively, use the Response as an async iterator to loop over multiple NCP field replies:

async for field in response:
pass

Important: The async for loop will only terminate when the underlying connection closes.

Accessing field data

The return value of Response.recv() is a Field, representing a NCP field. Access contained NCP parameters
using item access:

print(field["TSDC"])

Advanced usage

• NCP connection documentation.

8 Chapter 3. Usage

ncplib Documentation, Release 6.1.0

3.2.2 API reference

ncplib.connect(host: str, port: Optional[int] = None, *, remote_hostname: Optional[str] = None, host-
name: Optional[str] = None, connection_username: Optional[str] = None, connec-
tion_domain: str = ”, timeout: int = 60, auto_erro: bool = True, auto_warn: bool =
True, auto_ackn: bool = True, ssl: bool | ssl.SSLContext = False, username: str = ”,
password: str = ”)→ Connection

Connects to a NCP server.

Parameters

• host (str) – The hostname of the NCP server. This can be an IP address or domain name.

• port (int) – The port number of the NCP server.

• remote_hostname (str) – The identifying hostname for the remote end of the connec-
tion. If omitted, this will be the host:port of the NCP server.

• hostname (str) – The identifying hostname in the client connection. Defaults to the
system hostname.

• connection_username (str) – The identifying username in the client connection.
Defaults to the login name of the system user.

• connection_domain (str) – The identifying domain in the client connection.

• timeout (int) – The network timeout (in seconds). Applies to: connecting, receiving a
packet, closing connection.

• auto_erro (bool) – Automatically raise a CommandError on receiving an ERRO NCP
parameter.

• auto_warn (bool) – Automatically issue a CommandWarning on receiving a WARN
NCP parameter.

• auto_ackn (bool) – Automatically ignore NCP fields containing an ACKN NCP param-
eter.

• ssl (bool) – Connect to the Node using an encrypted (TLS) connection. Requires TLS
support on the Node.

• username (str) – Authenticate with the Node using the given username. Requires au-
thentication support on the Node.

• password (str) – Authenticate with the Node using the given password. Requires au-
thentication support on the Node.

Raises ncplib.NCPError – if the NCP connection failed.

Returns The client Connection.

Return type Connection

3.3 NCP server

ncplib allows you to create a NCP server and respond to incoming NCP client connections.

3.3. NCP server 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ncplib Documentation, Release 6.1.0

3.3.1 Overview

Defining a connection handler

A connection handler is a coroutine that starts whenever a new NCP client connects to the server. The provided
Connection allows you to receive incoming NCP commands as Field instances.

async def client_connected(connection):
pass

When the connection handler exits, the Connection will automatically close.

Listening for an incoming packet

When writing a NCP server, you most likely want to wait for the connected client to execute a command. Within your
client_connected function, Listen for an incomining NCP field using Connection.recv().

field = await connection.recv()

Alternatively, use the Connection as an async iterator to loop over multiple NCP field replies:

async for field in connection:
pass

Important: The async for loop will only terminate when the underlying connection closes.

Accessing field data

The return value of Connection.recv() is a Field, representing a NCP field.

Access information about the NCP field and enclosing NCP packet:

print(field.packet_type)
print(field.name)

Access contained NCP parameters using item access:

print(field["FCTR"])

Replying to the incoming field

Send a reply to an incoming Field using Field.send().

field.send(ACKN=1)

Putting it all together

A simple client_connected callback might like this:

10 Chapter 3. Usage

ncplib Documentation, Release 6.1.0

async def client_connected(connection):
async for field in connection:

if field.packet_type == "DSPC" and field.name == "TIME":
field.send(ACNK=1)
Do some more command processing here.

else:
field.send(ERRO="Unknown command", ERRC=400)
break

Start the server

Start a new NCP server.

loop = asyncio.get_event_loop()
server = loop.run_until_complete(_start_server(client_connected))
try:

loop.run_forever()
finally:

server.close()
loop.run_until_complete(server.wait_closed())

Advanced usage

• NCP connection documentation.

3.3.2 API reference

ncplib.start_server(client_connected: Callable[[ncplib.connection.Connection], Awaitable[None]],
host: str = ’0.0.0.0’, port: Optional[int] = None, *, timeout: int = 60,
start_serving: bool = True, ssl: Optional[ssl.SSLContext] = None, authenticate:
Optional[Callable[[str, str], bool]] = None)→ asyncio.base_events.Server

Creates and returns a new Server on the given host and port.

Parameters

• client_connected – A coroutine function taking a single Connection argument
representing the client connection. When the connection handler exits, the Connection
will automatically close. If the client closes the connection, the connection handler will exit.

• host (str) – The host to bind the server to.

• port (int) – The port to bind the server to.

• timeout (int) – The network timeout (in seconds). Applies to: creating server, receiving
a packet, closing connection, closing server.

• start_serving (bool) – Causes the created server to start accepting connections im-
mediately.

• ssl (ssl.SSLContext) – Start the server using an encrypted (TLS) connection.

• authenticate – A callable taking a username and password argument, returning True if
the authentication is successful, and false if not. When present, authentication is mandatory.

Returns The created Server.

Return type Server

3.3. NCP server 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/ssl.html#ssl.SSLContext

ncplib Documentation, Release 6.1.0

3.4 NCP connection

NCP connections are used by the NCP client and NCP server to represent each side of a connection.

3.4.1 Overview

Getting started

• NCP client documentation.

• NCP server documentation.

Spawning tasks

Spawn a concurrent task to handle long-running commands:

import asyncio

loop = asyncio.get_event_loop()

async def handle_dspc_time(field):
field.send(ACKN=1)
await asyncio.sleep(10) # Simulate a blocking task.
field.send(TSDC=0, TIMM=1)

for field in connection:
if field.packet_type == "DSPC" and field.name == "TIME":

Spawn a concurrent task to avoid blocking the accept loop.
loop.create_task(handle_dspc_time(field))

Handle other field types here.

3.4.2 API reference

Important: Do not instantiate these classes directly. Use connect() to create a NCP client connection. Use
start_server() to create a NCP server.

class ncplib.Connection(reader: asyncio.streams.StreamReader, writer: asyn-
cio.streams.StreamWriter, predicate: Callable[[ncplib.connection.Field],
bool], *, logger: logging.Logger, remote_hostname: str, timeout: int)

A connection between a NCP client and a NCP server.

Connections can be used as async iterators to loop over each incoming Field:

async for field in connection:
pass

Important: The async for loop will only terminate when the underlying connection closes.

Connections can also be used as async context managers to automatically close the connection:

12 Chapter 3. Usage

ncplib Documentation, Release 6.1.0

async with connection:
pass

Connection is automatically closed.

logger
The logging.Logger used by this connection. Log messages will be prefixed with the host and port
of the connection.

remote_hostname
The identifying hostname for the remote end of the connection.

close()→ None
Closes the connection.

Hint: If you use the connection as an async context manager, there’s no need to call Connection.
close() manually.

is_closing()→ bool
Returns True if the connection is closing.

A closing connection should not be written to.

recv()→ ncplib.connection.Field
Waits for the next Field received by the connection.

Raises ncplib.NCPError – if a field could not be retrieved from the connection.

Returns The next Field received.

Return type Field

recv_field(packet_type: str, field_name: str)→ ncplib.connection.Field
Waits for the next matching Field received by the connection.

Parameters

• packet_type (str) – The packet type, must be a valid identifier.

• field_name (str) – The field name, must be a valid identifier.

Raises ncplib.NCPError – if a field could not be retrieved from the connection.

Returns The next Field received.

Return type Field

send(packet_type: str, field_name: str, **params)→ ncplib.connection.Response
Sends a NCP packet containing a single NCP field.

Parameters

• packet_type (str) – The packet type, must be a valid identifier.

• field_name (str) – The field name, must be a valid identifier.

• **params – Keyword arguments, one per NCP parameter. Each parameter name should
be a valid identifier, and each parameter value should be one of the supported value types.

Returns A Response providing access to any Field instances received in reply to the sent
packet.

Return type Response

3.4. NCP connection 13

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

ncplib Documentation, Release 6.1.0

Raises

• ValueError – if any of the packet, field or parameter names were not a valid identifier,
or any of the parameter values were invalid.

• TypeError – if any of the parameter values were not one of the supported value types.

send_packet(packet_type: str, **fields)→ ncplib.connection.Response
Sends a NCP packet containing multiple NCP fields.

Hint: Prefer send() unless you need to send multiple fields in a single packet.

Parameters

• packet_type (str) – The packet type, must be a valid identifier.

• **fields – Keyword arguments, one per field. Each field name should be a valid identi-
fier, and the field value should be a dict of parameter names mapped to parameter values.
Each parameter name should be a valid identifier, and each parameter value should be one
of the supported value types.

Returns A Response providing access to any Field instances received in reply to the sent
packet.

Return type Response

Raises

• ValueError – if any of the packet, field or parameter names were not a valid identifier,
or any of the parameter values were invalid.

• TypeError – if any of the parameter values were not one of the supported value types.

transport
The asyncio.WriteTransport used by this connection.

wait_closed()→ None
Waits for the connection to finish closing.

Hint: If you use the connection as an async context manager, there’s no need to call Connection.
wait_closed() manually.

class ncplib.Response(connection: ncplib.connection.Connection, packet_type: str, expected_fields:
Set[Tuple[str, int]])

A response to a NCP packet, returned by Connection.send(), Connection.send_packet() and
Field.send().

Provides access to any Field received in reply to the sent packet.

Responses can be used as async iterators to loop over each incoming Field:

async for field in response:
pass

Important: The async for loop will only terminate when the underlying connection closes.

14 Chapter 3. Usage

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/asyncio-protocol.html#asyncio.WriteTransport

ncplib Documentation, Release 6.1.0

recv()→ ncplib.connection.Field
Waits for the next Field received in reply to the sent NCP packet.

Raises ncplib.NCPError – if a field could not be retrieved from the connection.

Returns The next Field received.

Return type Field

recv_field(field_name: str)→ ncplib.connection.Field
Waits for the next matching Field received in reply to the sent NCP packet.

Hint: Prefer recv() unless the sent packet contained multiple fields.

Parameters field_name (str) – The field name, must be a valid identifier.

Raises ncplib.NCPError – if a field could not be retrieved from the connection.

Returns The next Field received.

Return type Field

class ncplib.Field(connection: ncplib.connection.Connection, packet_type: str, packet_id: int,
packet_timestamp: datetime.datetime, name: str, id: int, params: Iter-
able[Tuple[str, Union[bytes, bytearray, str, int, float, ncplib.values.u32, nc-
plib.values.i64, ncplib.values.u64, ncplib.values.f64, bool, array.array]]])

A NCP field received by a Connection.

Access NCP parameter values using item access:

print(field["PDAT"])

connection
The Connection that created this field.

packet_type
The type of NCP packet that contained this field. This will be a valid identifier.

packet_id
The ID of the of NCP packet that contained this field.

packet_timestamp
A timezone-aware datetime.datetime describing when the containing packet was sent.

name
The name of the NCP field. This will be a valid identifier.

id
The unique int ID of this field.

send(**params)→ ncplib.connection.Response
Sends a NCP packet containing a single field in reply to this field.

Parameters **params – Keyword arguments, one per NCP parameter. Each parameter name
should be a valid identifier, and each parameter value should be one of the supported value
types.

Returns A Response providing access to any Field instances received in reply to the sent
packet.

Return type Response

3.4. NCP connection 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#int

ncplib Documentation, Release 6.1.0

Raises

• ValueError – if any of the packet, field or parameter names were not a valid identifier,
or any of the parameter values were invalid.

• TypeError – if any of the parameter values were not one of the supported value types.

3.5 Errors and warnings

NCP errors and warnings.

3.5.1 API reference

exception ncplib.NCPError
Base class for all exceptions thrown by ncplib.

exception ncplib.NetworkError
Raised when an NCP Connection cannot connect, or disconnects unexpectedly.

exception ncplib.AuthenticationError
Raised when an NCP Connection cannot authenticate.

exception ncplib.NetworkTimeoutError
Raised when an NCP Connection times out while performing network activity.

exception ncplib.ConnectionClosed
Raised when an NCP Connection is closed gracefully.

exception ncplib.CommandError(field: Field, detail: str, code: int)
Raised by the NCP client when the NCP server sends a NCP field containing an ERRO parameter.

Can be disabled by setting auto_erro to False in ncplib.connect().

field
The ncplib.Field that triggered the error.

detail
The human-readable str message from the server.

code
The int code from the server,

exception ncplib.DecodeError
Raised when a non-recoverable error was encountered in a NCP packet.

exception ncplib.CommandWarning(field: Field, detail: str, code: int)
Issued by the NCP client when the NCP server sends a NCP field containing a WARN parameter.

Can be disabled by setting auto_warn to False in ncplib.connect().

field
The ncplib.Field that triggered the error.

detail
The human-readable str message from the server.

code
The int code from the server,

16 Chapter 3. Usage

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

ncplib Documentation, Release 6.1.0

exception ncplib.DecodeWarning
Issued when a recoverable error was encountered in a NCP packet.

3.6 Value types

3.6.1 Overview

NCP data types are mapped onto python types as follows:

NCP type Python type
i32 int
u32 ncplib.u32
i64 ncplib.i64
u64 ncplib.u64
f32 float
f64 ncplib.f64
string str
raw bytes
data i8 array.array(typecode="b")
data i16 array.array(typecode="h")
data i32 array.array(typecode="i")
data u8 array.array(typecode="B")
data u16 array.array(typecode="H")
data u32 array.array(typecode="I")
data u64 array.array(typecode="L")
data i64 array.array(typecode="l")
data f32 array.array(typecode="f")
data f64 array.array(typecode="d")

3.6.2 API reference

class ncplib.u32
A u32 value.

Wrap any int values to be encoded as u32 in u32.

class ncplib.i64
An i64 value.

Wrap any int values to be encoded as i64 in i64.

class ncplib.u64
A u64 value.

Wrap any int values to be encoded as u64 in u64.

class ncplib.f64
A f64 value.

Wrap any float values to be encoded as f64 in f64.

3.6. Value types 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

ncplib Documentation, Release 6.1.0

18 Chapter 3. Usage

CHAPTER 4

More information

4.1 Contributing

Bug reports, bug fixes, and new features are always welcome. Please raise issues on GitHub, and submit pull requests
for any new code.

4.1.1 Testing

It’s recommended to test ncplib in a virtual environment using venv.

Run the test suite:

pip install -e .
python -m unittest discover tests

4.1.2 Contributors

ncplib was developed by CRFS and other contributors.

4.2 Glossary

identifier A str of ascii uppercase letters and numbers, at most 4 characters long, e.g. "DSPC".

NCP Node Communication Protocol, a binary communication and control protocol, developed by CRFS.

NCP field Each NCP packet contains zero or more fields. A field consists of a field name, which must be a valid
identifier, and zero or more NCP parameters.

ncplib represents each field in an incoming NCP packet as a ncplib.Field instance.

19

http://github.com/CRFS/python3-ncplib
https://docs.python.org/3/library/venv.html#module-venv
http://www.crfs.com/
https://github.com/CRFS/python3-ncplib/graphs/contributors
https://docs.python.org/3/library/stdtypes.html#str
http://www.crfs.com/

ncplib Documentation, Release 6.1.0

NCP packet The basic unit of NCP communication. A packet consists of a packet type, which must be a valid
identifier, and zero or more NCP fields.

NCP parameter Each NCP field contains zero or more parameters. A parameter consists of a parameter name, which
must be a valid identifier, and a value, which must be one of the supported value types.

ncplib represents each parameter as a name/value mapping on a ncplib.Field instance.

4.3 Changelog

4.3.1 6.1.0 - 11/06/2022

• Added connection_username and connection_domain arguments to connect().

4.3.2 6.0.1 - 23/12/2021

• Added explicit support for async_timeout 4.0.

4.3.3 6.0.0 - 23/12/2021

• Added support for NCP encrypted (TLS) connections via the ssl argument for connect() and
start_server().

• Added support for NCP authentication via the username and password arguments for connect(), and
the authenticate argument for start_server().

• Breaking: start_server() now returns a asyncio.base_events.Server, and the ncplib.
Server class has been removed.

4.3.4 5.0.0 - 18/02/2021

• Added support for NCP connection timeout negotation, improving reliability and cleanup of NCP connections
when supported by the remote.

• Added support for NCP data types i64, u64, f32, f64, data u64, data i64, data f32 and data
f64.

• Response.recv() no longer requires the ID of the of NCP packet in replies.

• Breaking: auto_link and auto_auth arguments for connect() and start_server() removed.

• Breaking: timeout argument for connect() and start_server() must be an integer, and can no
longer be None.

• Breaking: Removed timeout attribute from Connection.

4.3.5 4.1.1 - 14/09/2020

• Optimized auto_link background task.

20 Chapter 4. More information

ncplib Documentation, Release 6.1.0

4.3.6 4.1.0 - 07/07/2020

• Added Field.packet_id attribute.

• Field.send() now includes the ID of the of NCP packet that contained the field.

• Response.recv() now requires the ID of the of NCP packet in replies.

4.3.7 4.0.0 - 20/05/2020

• Breaking: Renamed ConnectionError to NetworkError to avoid conflicts with stdlib.

• Added timeout parameter to connect(), start_server() and Connection. This is the network time-
out (in seconds). If None, no timeout is used, which can lead to deadlocks. The default timeout is 15 seconds.
A NetworkTimeoutError error will be raised if a timeout is exceeded.

4.3.8 3.0.0 - 24/10/2019

This release requires a minimum Python version of 3.7.

• Breaking: Python 3.7 is now the minimum supported Python version.

• Breaking: Removed app framework.

• Breaking: Removed run_client and run_app.

• Added Connection.wait_closed() to ensure that the connection is fully closed (needed since Python
3.7).

• Added full PEP 484 type hints, allowing tools like mypy to be used to statically-verify ncplib programs.

4.3.9 2.3.3 - 27/03/2017

• Only applying wait_for compatibility shim to Python 3.4.2 and below.

4.3.10 2.3.2 - 15/03/2017

• Forcing cancellation of timed out connection in run_client in Python 3.4.2.

• Added examples.

4.3.11 2.3.1 - 02/03/2017

• Using remote_hostname in connect errors messages generated by run_client.

• Fixed issues with mixing coroutines and async defs.

• Fixed issues with logging connection errors in run_client.

4.3. Changelog 21

https://docs.python.org/3/library/exceptions.html#ConnectionError
https://github.com/CRFS/python3-ncplib/tree/master/examples

ncplib Documentation, Release 6.1.0

4.3.12 2.3.0 - 02/03/2017

• Added Field.connection.

• Added app.

• Added :class‘NCPError‘, ConnectionError and :class‘ConnectionClosed‘ exceptions.

• Added run_client.

• connect(), Connection.recv(), Connection.recv_field(), Response.recv() and
Response.recv_field() no longer raise EOFError or OSError, but a subclass of NCPError.

• Micro-optimizations, roughly doubling the performance of encode/decode.

• Connection open and close log messages promoted from DEBUG to INFO level.

4.3.13 2.2.1 - 27/02/2017

• Fixed bug with Node authentication due to premature sending of LINK packets.

• Fixed edge-case bug in connection closing.

4.3.14 2.2.0 - 27/02/2017

• Added Python 3.4 support.

• Added Connection.is_closing().

• Added Connection.remote_hostname.

• Added auto_link parameter to connect(), start_server() and run_app.

• Added remote_hostname parameter to connect().

• Connection open and close log messages demoted from INFO to DEBUG level.

4.3.15 2.1.0 - 04/11/2016

• Client hostname used in connect() defaults to system hostname, instead of "python3-ncplib".

• Added hostname parameter to connect(), to override default client hostname.

• Removed multiplexing support for multiple Response over a single connection. This must now be imple-
mented in application code.

• Connection logger no longer formats the host and port in log messages. This must now be done using the
standard Python logging.Formatter.

4.3.16 2.0.14 - 04/11/2016

• Added support for parsing known embedded footer bug from Axis nodes.

• Fixed pending deprecation warning for legacy __aiter__ protocol.

4.3.17 2.0.13 - 21/10/2016

• Using transport.is_closing() to detect lost connection, making ncplib compatible with uvloop.

22 Chapter 4. More information

https://docs.python.org/3/library/exceptions.html#ConnectionError
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.python.org/3/library/exceptions.html#OSError
https://docs.python.org/3/library/logging.html#logging.Formatter

ncplib Documentation, Release 6.1.0

4.3.18 2.0.12 - 21/10/2016

• Connection.recv_field() and Response.recv_field() now raise an exception on network error
to match the behavior of Connection.recv() and Response.recv(). Previously they returned None
on network error, an undocumented and undesired behavior.

4.3.19 2.0.11 - 14/10/2016

• Deprecated wait_closed() on Connection. It’s now a no-op, and Connection.close() is sufficient
to close the connection.

4.3.20 2.0.10 - 14/10/2016

• Fixed IPv6 handling in NCP server.

4.3.21 2.0.9 - 13/10/2016

• Handling more classes of shutdown errors.

4.3.22 2.0.8 - 13/10/2016

• Suppressing connection errors in NCP server.

4.3.23 2.0.7 - 13/10/2016

• Handling more classes of shutdown errors.

4.3.24 2.0.6 - 13/10/2016

• Handling more classes of client connection error gracefully.

• Handling shutdown of broken connections gracefully.

4.3.25 2.0.5 - 11/10/2016

• Gracefully closing client connections on authentication error.

4.3.26 2.0.4 - 05/09/2016

• Not validating packet format in incoming packets.

4.3.27 2.0.3 - 02/09/2016

• Not logging client errors and warnings, since raised exceptions/warnings will do this automatically.

4.3. Changelog 23

ncplib Documentation, Release 6.1.0

4.3.28 2.0.2 - 01/09/2016

• Stripping trailing spaces from field names on decode, in addition to null bytes.

4.3.29 2.0.1 - 19/07/2016

• Added run_app function to NCP server.

4.3.30 2.0.0 - 17/03/2016

This release requires a minimum Python version of 3.5. This allows ncplib to take advantage of new native support
for coroutines in Python 3.5. It also provides a new start_server() function for creating a NCP server.

A number of interfaces have been updated or removed in order to take better advantage of Python 3.5 async features,
and to unify the interface between NCP client and NCP server connections. Please read the detailed release notes
below for more information.

• NCP server support.

• Connection can be used as an async context manager.

• Connection.send() has a cleaner API, allowing params to be specified as keyword arguments.

• Connection.send() and Connection.send_packet() return a Response that can be used to ac-
cess replies to the original messages.

• Connection.recv(), Connection.recv_field(), Response.recv() and Response.
recv_field() return a Field instance, representing a NCP field.

• Connection and Response can be used as an async iterator of Field.

• Field.send() allows direct replies to be sent to the incoming NCP field.

• Breaking: Python 3.5 is now the minimum supported Python version.

• Breaking: Connection.send() API has changed to be single-field. Use Connection.
send_packet() to send a multi-field NCP packet.

• Breaking: Connection.execute() has been removed. Use Connection.send().recv() instead.

4.3.31 1.0.1 - 21/12/2015

• Automated build and release of package to private Anaconda Cloud channel.

4.3.32 1.0.0 - 07/12/2015

• First production release.

24 Chapter 4. More information

Python Module Index

n
ncplib, 1
ncplib.client, 7
ncplib.connection, 11
ncplib.errors, 16
ncplib.server, 9
ncplib.values, 17

25

ncplib Documentation, Release 6.1.0

26 Python Module Index

Index

A
AuthenticationError, 16

C
close() (ncplib.Connection method), 13
code (ncplib.CommandError attribute), 16
code (ncplib.CommandWarning attribute), 16
CommandError, 16
CommandWarning, 16
connect() (in module ncplib), 9
Connection (class in ncplib), 12
connection (ncplib.Field attribute), 15
ConnectionClosed, 16

D
DecodeError, 16
DecodeWarning, 16
detail (ncplib.CommandError attribute), 16
detail (ncplib.CommandWarning attribute), 16

F
f64 (class in ncplib), 17
Field (class in ncplib), 15
field (ncplib.CommandError attribute), 16
field (ncplib.CommandWarning attribute), 16

I
i64 (class in ncplib), 17
id (ncplib.Field attribute), 15
identifier, 19
is_closing() (ncplib.Connection method), 13

L
logger (ncplib.Connection attribute), 13

N
name (ncplib.Field attribute), 15
NCP, 19
NCP field, 19

NCP packet, 20
NCP parameter, 20
NCPError, 16
ncplib (module), 1
ncplib.client (module), 7
ncplib.connection (module), 11
ncplib.errors (module), 16
ncplib.server (module), 9
ncplib.values (module), 17
NetworkError, 16
NetworkTimeoutError, 16

P
packet_id (ncplib.Field attribute), 15
packet_timestamp (ncplib.Field attribute), 15
packet_type (ncplib.Field attribute), 15

R
recv() (ncplib.Connection method), 13
recv() (ncplib.Response method), 14
recv_field() (ncplib.Connection method), 13
recv_field() (ncplib.Response method), 15
remote_hostname (ncplib.Connection attribute), 13
Response (class in ncplib), 14

S
send() (ncplib.Connection method), 13
send() (ncplib.Field method), 15
send_packet() (ncplib.Connection method), 14
start_server() (in module ncplib), 11

T
transport (ncplib.Connection attribute), 14

U
u32 (class in ncplib), 17
u64 (class in ncplib), 17

W
wait_closed() (ncplib.Connection method), 14

27

	Features
	Resources
	Usage
	More information
	Python Module Index
	Index

